The Investigation of an Alternative Tailings Deposition System for Uranium Tailings

Presented to: Saskatchewan Mining Association Environmental Forum 2018

Erik Ketilson, MEng, PEng – SRK Consulting – Saskatoon | eketilson@srk.com
J. Matthew Treinen, PhD – Paterson & Cooke - Denver | matt.treinen@patersoncooke.com

October 18, 2018
Problem Statement

- Cigar Lake tailings properties and the tailings depositional system are resulting in inefficient use of the existing pit volume.
 - reduce the operating life of the existing TMF
 - accelerate capital expenditures to construct the various phases of optimization and/or expansion.
Tailings PSD

Cigar Lake Tailings PSD (2015-2016)
Deposition System & Considerations

- Tremie adopted to minimize tailings segregation
- Pumping capacity is limited
 - \(\sim 25\% \) solids for CL tails using the tremie method
 - \(\sim 35\% \) solids based on existing pumping system
- One point of discharge
 - sufficient capacity for deposition over winter (November to June)
 - walkway freezes-in place resulting in the inability to move the discharge point
Deposition System & Considerations

• Barge movement completed by:
 – Rigid walkway structure and manual winches
 – Wind, waves, wet conditions and safe use of walkway

• Access to deposition areas is needed to meet regulatory sampling requirements, tremie house is heated

• Quality of the reclaim may be impacted if deposition barge is too close
Tremie Deposition
Tailings Surface Development - 2014
Tailings Surface Development - 2015
Tailings Surface Development - 2016
Tailings Surface Development - May 2017
Deposition Planning – Post Modelling Comparison
Preferred Options

- Two Preferred Options
 - satellite deposition barges from the existing barge structures
 - subaqueous deposition from barge with radial pipes
Subaqueous Deposition Trial

Criteria for Success

<table>
<thead>
<tr>
<th>Concerns</th>
<th>Rational for Concern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segregation of Deposited Tailings</td>
<td>- Any change in deposition method must not worsen segregation.</td>
</tr>
<tr>
<td>Prevent Blockages in the subaqueous Diffuser System</td>
<td>- Previous tremie design failed because it got stuck in tailings.</td>
</tr>
<tr>
<td></td>
<td>- Test work will assess if the subaqueous deposition method is at risk of becoming blocked, placing additional burden on operations.</td>
</tr>
<tr>
<td>Impacts to TMF volume</td>
<td>- The volume in the TMF is a resource, we need to ensure that there are no negative impacts on that resource. Ineffective use of space may impact the construction schedule.</td>
</tr>
<tr>
<td>- Deposition angle</td>
<td></td>
</tr>
<tr>
<td>- Initial placed density</td>
<td></td>
</tr>
</tbody>
</table>
Subaqueous Deposition Planning

CFD Diffuser Evaluation Assuming a Solids Content of ~25%

CFD Modelling – No Diffuser
Subaqueous Deposition Trial Monitoring

- Water Sampling
- Particle size sampling
- Bathymetric surveys
- Orthophotos
- Deposition Stream Videos

Field Trail Subaqueous Diffuser Concept
Subaqueous Deposition Trial

Trial Occurred September 24th to October 18th 2017
Subaqueous Deposition Trial - Results

Comparison of Resulting Profile at a Fixed 10 m Deposit Height Considering Compound Slopes
Subaqueous Deposition Trial - Results

Samples Collected from the Deposition Point and Thickener Underflow between October 12 and October 18, 2017

Surficial Samples Collected October 18
Subaqueous Deposition Trial - Results

Surficial Samples Collected October 18

D₅₀ of the Surficial Samples Collected October 18
Flexible Walkway
Conclusions

• Subaqueous deposition:
 – provide more flexibility with deposition points
 – allows the ability to maximize the use of the available pit capacity
 – does not compromise the tailings objectives

• System was installed fall 2018 and is currently operational
Acknowledgements
Questions?