ABSTRACT

An essential component in the evaluation of a mineral deposit or a mine development project is the consideration of environmental impact, particularly the leaching of deleterious elements such as As and many of the transition metals or of Acid Rock Drainage (ARD) generation. A major part of this assessment is the potential for the materials within the mineral deposit to degrade land or water.

In order to make this assessment testwork or modeling programs are conducted to predict the magnitude of impact and to assess future changes. Very often this work is carried out late in a development timetable and can lead to frustrating and costly delays for the developer. However, the prediction of geochemical impacts from a mineral deposit can be qualitatively determined at an early stage in development and used to execute a more efficient impact assessment.

The processes that can lead to geochemical impact from a mineral deposit are generally related to the geologic characteristics of the ore and host rocks. For example ARD is related to the presence of acid generating phases, especially Fe-bearing sulfides or sulfate minerals coupled with the lack of buffering agents. Consequently, the potential for metal leaching can be qualitatively based on the altered wallrock mineral assemblage that constitutes the highest proportion of waste rock and exposed wallrock. Geochemical reactions, like metal leaching, are natural processes and as such they can be interpreted in the context of geologic understanding.

This paper presents field and mineralogical observations from several contrasting ore deposit types, common to the Great Basin, along with associated laboratory assessment of geochemical leaching. A practical guideline is discussed for the field assessment of geochemical impacts that can be made during the exploration and pre-mine development phases of a project. The inclusion of geologic knowledge to that of engineering design and analytical testing and modelling is recommended in order to reduce the costs and delay associated with environmental assessment during pre-mine development.

INTRODUCTION

Metal leaching and generation of acidic drainage from a mineral deposit is a naturally occurring process. This can cause a negative impact on the receiving environment. The cost of treating problematic elements such as metals or of treating ARD can be high. But, if the major source(s) can be identified, then selective treatment may be more effective than the treatment of a much larger quantity of non-problematic material with which it is arbitrarily classified. Typically the approach taken historically was to wait until an impact occurred and then design remediation (engineering task). Often this was costly and inappropriate technology was applied so environmental impact were not completely mitigated. A more recent approach has been to acquire estimates of reactivity from laboratory testwork and use this as input components to predictive modeling. While this approach is effective in gaining predictions, very often the predictions do not match reality and unnecessary costs are incurred by the project both in the prediction and then based on this through any work undertaken or regulatory bond applied. Rarely is the third segment of the process applied, which is to provide a detailed environmental geologic assessment at an early stage in the mineral property development.

The processes that govern generation of acidic leachate and mobilization of metals (grouped collectively as Acid Rock Drainage or ARD in this paper) can be characterized and classed (SRK, 1989; Nordstrom and Alpers, 1999a). Equally, despite individual peculiarities, mineral deposits can also be classified according to mineralogic and geologic characteristics. Logically it follows that as ARD characteristics can also be classed according to geologic rock type (Ficklin et al., 1992; Plumlee, 1994; du Bray, 1995; Plumlee and Logsdon, 1999). The geology of a mineral deposit exerts a fundamental control on interaction with the environment. Other important controls such as geochemical and biologically mediated processes, hydrogeology, hydrology, climate, topography, mining and mineral processing methods generally modify the environmental effects inferred by the geology.

This paper describes the major processes involved, the influence of geology and mineralogy for several deposit types on environmental behavior and discusses how geologists can be involved in predictions at an early stage of project development. All of which can reduce liability, operational and closure costs for a mining development.

METHODS

In this paper, ARD characteristics are assessed using conventional prediction methods (Sobek et al., 1978; SRK, 1989; Miller et al., 1997; Price, 1997). These methods have
TABLE 1. Summary of analytical methodologies.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rationale</th>
<th>Method</th>
<th>Task Type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineralogy</td>
<td>Assess mineral speciation</td>
<td>Optical/SEM/XRD</td>
<td>Field/lab</td>
<td>SRK 1989</td>
</tr>
<tr>
<td>Geochemistry expressed as a concentration, generally mg/kg</td>
<td>Assess total chemistry</td>
<td>ICPAES/XRF</td>
<td>Lab</td>
<td>SRK 1989</td>
</tr>
<tr>
<td>Paste pH/TDS with pH as su and TDS as mg/l</td>
<td>Assess reactive H⁺ and solute release</td>
<td>Mix with water in field, 1:1 ratio</td>
<td>Field/lab</td>
<td>SRK 1989</td>
</tr>
<tr>
<td>Meteoric Water Mobility Procedure (MWMP) expressed in mg/l</td>
<td>Assess mobile constituents</td>
<td>Flushing of sample with one pore volume for 24 hours</td>
<td>Lab</td>
<td>NDEP 1990, 1996</td>
</tr>
<tr>
<td>Acid Base Accounting (ABA) in eq kg CaCO₃/t</td>
<td>Assess total acid that can be generated</td>
<td>Measure sulfide, total-, and sulfate-S, inorganic carbon; and titration with HCl/NaOH</td>
<td>Lab</td>
<td>Sobek et al., 1978; Price 1997</td>
</tr>
<tr>
<td>Net Acid Generation (NAG) in eq kg H₂SO₄/t and final pH as su</td>
<td>Assess total acid that can be generated</td>
<td>Oxidise with H₂O₂; titration with HCl/NaOH</td>
<td>Lab</td>
<td>Miller et al., 1997</td>
</tr>
</tbody>
</table>
been used widely in the prediction of ARD and will not be repeated in detail here but are summarized in Table 1.

Most of the laboratory work was undertaken at Sierra Environmental Monitoring, Sparks, Nevada, or at Chemex laboratories, Reno, Nevada. Additional sample characterization was conducted at the Division of Materials and Minerals, Cardiff University, Wales.

FACTORS INVOLVED IN METAL LEACHING AND ACID GENERATION

In the assessment of the acid generating potential of rock or ore types, two key factors need to be determined:
- The presence of acid generating phases
- The presence of acid consuming phases

Additionally in an arid environment, such as Nevada, the acid generating phases can constitute primary sources, such as sulfide oxidation, and secondary sources, such as sulfate dissolution.

PRIMARY SOURCES OF ACIDITY

Primary acid generating minerals are sulfides of the type, MS₂, the most common being FeS₂. The mechanisms of sulfide oxidation involve the transfer of electrons. As most sulfide minerals are electrical conductors in the semiconductor to metallic range, they can be considered as electrochemical “corrosion cells” similar to galvanic corrosion of metal alloys (Bailey & Peters, 1976; Thornber, 1975a,b, 1983, 1992, 1993; Sivenas and Beal, 1982). Sulfides are “geo-batteries” with the emphasis on “self-corrosion” by sulfide ores. These electrochemical reactions are a combination of a reduction reaction at a cathode, on the more noble phase and an oxidation reaction at the anode on the more reactive phase. Galvanic “corrosion” has been confirmed in numerous experimental studies (Thornber, 1975a; 1983; Bailey & Peters, 1976; McKibben & Barnes, 1986).

Additionally hydrogen ions are released in the process of metal hydrolysis and this is most pronounced when the cation is iron due to the further oxidation of Fe²⁺ to Fe³⁺ and hydrolysis to form Fe(OH)₃ (Table 2). It should be noted that not all

Reaction		

Reaction 1	a) FeS₂ + 7/2O₂ + H₂O = Fe²⁺ + 2SO₄²⁻ + 2H⁺	
	b) 2FeS₂ + 7O₂ + 2H₂O = 2FeSO₄ + 2H₂SO₄	
Reaction 2	a) Fe²⁺ + H₂O + O₂ = Fe(OH)₃ + 2H⁺	
	b) 2FeSO₄ + H₂SO₄ + 1/2O₂ = Fe₂(SO₄)₃ + H₂O	
Reaction 3	Fe²⁺ + 1/4O₂ + H⁺ = Fe³⁺ + 1/4H₂O	
Reaction 4	FeS₂ + 14Fe³⁺ + 8H₂O = 15Fe²⁺ + 2SO₄²⁻ + 16H⁺	

Stage 1
Reaction 1: proceeds abiotically and by bacterial oxidation (reaction b more common with bacterial oxidation)
Reaction 2: proceeds abiotically, slows as pH falls (reaction b more common with bacterial oxidation)
pH approximately 4.5 or higher, high sulphate, low Fe, low pH

Stage 2
Reaction 1: proceeds abiotically and by bacterial oxidation (reaction b more common with bacterial oxidation)
Reaction 2: proceeds at rate determined primarily by activity of bacteria such as T.ferrooxidans
pH approximately 2.5-4.5, high sulphate, Fe and low pH. Low Fe³⁺/Fe²⁺ ratio

Stage 3
Reaction 3: proceeds at rate determined by activity of T.ferrooxidans
Reaction 4: proceeds at rate determined by rate of reaction 3
pH generally below 2.5, high sulphate, total Fe and low pH. High Fe³⁺/Fe²⁺ ratio
sulfides on oxidation generate acidity (Thornber, 1992). Indeed sulfides of the type M_2S such as chalcocite actually consume H^+ on oxidation.

The rate of sulfide oxidation can be controlled by the rate at which oxygen is supplied and reduced at the cathode-solution interface. The separation of the cathodic oxygen-consuming, alkali-producing reaction from the anodic, oxidizing, acid-producing reaction will have a major control on the mineralogy of the resulting assemblage. The greater the distance between cathode and anode, the more extensive the conducting area and consequently the greater the potential for sulfide oxidation. Anodic reactions can occur deep within cracks, fissures and along grain boundaries where solutions can penetrate without the necessity for dissolved oxygen (Lowson, 1982; Thornber, 1975a,b; 1992).

Consequently, massive sulfide ores and sulfide-rich zones, such as those in high sulfidation epithermal systems are generally good conductors, the exception is with massive sphalerite, which is an insulator (Thornber, 1992). Where sulfides are more dispersed, such as in some Carlin-type ores, distance between oxidizing sulfides is greater and conduction is reduced so the extent of oxidation is not so great. Each sulfide grain weathers as an isolated cell and the only influence that one sulfide grain can have on another is via aqueous solution. Access by dissolved oxygen will determine leaching and sulfide composition will influence pH, water chemistry, reaction rate, and secondary mineralogy. Generally, leaching is greatest near the surface.

SECONDARY SOURCE OF ACIDITY

On weathering, sulfides can release all acid potential producing a range of hydroxides and oxides such as goethite. Alternatively they can release only a portion of the total acidity and store some acidity in secondary salts which are stable respect to some species. Consequently in response to either saturation or destabilization as aqueous species, these minerals are termed Acid Volatile Sulfate Salts. As an example the formation of jarosite (Fig. 1):

$$3FeS_2 + 9/2O_2 + 15/2H_2O + K^+ =$$
$$KFe_3(SO_4)_2(OH)_6 + 4SO_4^{2-} + 9H^+$$

For each mole of pyrite oxidized, only a third of the available sulfate and hydrogen is released. The rest is stored as unhydrolyzed, partly oxidized iron-sulfate minerals. These sulfate minerals are termed Acid Volatile Sulfate Salts. As an example the most common of these salts are given in Table 3. Not all necessarily release hydrogen and sulfate on dissolution but all release sulfate anions. These minerals are highly soluble so can represent an instantaneous source of acidic sulfate-rich water upon dissolution and hydrolysis, for example the dissolution of jarosite:

$$KFe_3(SO_4)_2(OH)_6 + 3/2O_2 = 3FeO.OH +$$
$$K^+ + 2SO_4^{2-} + 3H^+ + 3/2H_2O$$

Subsequent oxidation of ferrous iron and hydrolysis of ferric iron at $pH > 2$ provides an additional source of acidity (see Table 2). Hence these minerals are important as both sinks and sources of acidity, sulfate and possibly metal ions on precipitation and rapid release on exposure to moisture (Nordstrom, 1982; Fillipek et al., 1988; Cravotta, 1991, 1994).

BUFFERING OF ACID CAPACITY

Acid-neutralization reactions result from mineral buffering of H^+ in drainage. This buffering is frequently accompanied by the precipitation of secondary minerals (Kwong and Ferguson, 1997; Lawrence and Wang, 1997; Nordstrom and Alpers, 1999a). These reactions can reduce acid generation by forming an inhibitory surface coating on the reactive sulfides. Under acidic conditions, carbonate minerals (e.g. calcite, dolomite and magnesite) readily dissolve and provide bicarbonate alkalinity which results in neutralization of acid and precipitation of metal hydroxides. The major buffering mineral groups and characteristics with respect to ARD are shown in Table 4.

The order of carbonate neutralizing capacity is calcite>dolomite>ankerite>siderite. In the case of siderite and to a lesser extent ankerite the reason for the limited neutralizing capacity is that ferrous iron in these minerals is an additional source of acidity due to the strong hydrolysis of ferrous iron in solution. This order of reactivity is partly controlled by equilibrium mass-action constraints and partly by kinetic limitations (Morse, 1983). Carbonate minerals (especially calcite) have often erroneously been thought of as the only geologic source of Neutralization Potential (NP). However, carbonates dominate only limestone, dolomite and marble rock types whilst the majority of geologic materials are composed of silicates and hydroxide-oxide minerals.

Silicate weathering as a proton sink has been demonstrated in previous studies (Sverdrup, 1990; Bhatti et al, 1992; Moss and Edmunds, 1992; Kwong and Ferguson, 1997). To assess the buffering capacity of mine wastes, silicate and hydroxide minerals therefore must also be considered. From soil acidification studies, Sverdrup (1990) divided the most common minerals into six groups according to pH dependency of their dissolution rate (Table 4).

From the relative weathering rates the mineral groups show, minerals in groups 4-6 will be poor to negligible neutralizing materials due to their sluggish reaction rates. Even the intermediate and fast weathering groups, are not practical neutralizing materials unless their occur in excess of ~10% (Sverdrup, 1990).

METAL LEACHING AND ATTENUATION PROCESSES

The primary leaching processes include sulfide oxidation and associated mineral buffering, both of which increase the total dissolved solid load in the resulting water. The accumulation of solutes in solution will lead to saturation with respect to some species. Consequently in response to either saturation or destabilization as aqueous species, these com-
pounds precipitate as secondary minerals such as arsenates, phosphates, carbonates, sulfates or hydroxides. Additionally some of these solutes can be attenuated through surface adsorption onto mineral surfaces, noticeably iron hydroxides and clays.

This is the process of element binding at the mineral solution interface and like solubility is pH dependent, for example the adsorption of arsenic species by goethite (Bowell, 1994). Many oxide surfaces change from being positive at low pH (thus attracting anions) to negative at high pH (attracting cations). Mine drainage chemistry and particularly the level of As and heavy metals has been shown to be influenced by adsorption onto precipitated hydrous ferric oxide, or HFO (this may also include minerals like schwertmannite, goethite and jarosite amongst others; Fuge et al., 1994; Bigham, 1994; Bowell et al., 1996). It should however be noted that in many acidic environments, flushing or dissolution of these HFO can lead to high As concentrations in solution as well as competition from complexing ions mobilizing As-oxyanions.

FIGURE 1. Eh-pH diagram for the Fe-S-C-O-H system at 298 K. Fe,S=10^{-6}M; P_{CO_2}=10^{-2}M.
TABLE 3. Secondary sulfate salts commonly observed in mine drainage.

<table>
<thead>
<tr>
<th>Selected soluble sulfates</th>
<th>Selected less soluble sulfates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron minerals</td>
<td></td>
</tr>
<tr>
<td>Copiapite</td>
<td>Fe(^{2+})Fe(^{3+}) (SO(_4))(_6)(OH)(_2).20H(_2)O</td>
</tr>
<tr>
<td>Coquimbite</td>
<td>Fe(^{2+})(SO(_4))(_3).9H(_2)O</td>
</tr>
<tr>
<td>Ferricipiapite</td>
<td>Fe(^{2+})Fe(^{3+}) (SO(_4))(_6)(OH)(_2).20H(_2)O</td>
</tr>
<tr>
<td>Melanterite</td>
<td>Fe(^{2+})SO(_4).7H(_2)O</td>
</tr>
<tr>
<td>Ferrohexahydrite</td>
<td>Fe(^{2+})SO(_4).5H(_2)O</td>
</tr>
<tr>
<td>Paracoquimbite</td>
<td>Fe(^{2+})(SO(_4))(_3).9H(_2)O</td>
</tr>
<tr>
<td>Rhomboclase</td>
<td>HFe(SO(_4))(_2).4H(_2)O</td>
</tr>
<tr>
<td>Rozenite</td>
<td>Fe(^{2+})SO(_4).4H(_2)O</td>
</tr>
<tr>
<td>Siderotil</td>
<td>Fe(^{2+})SO(_4).6H(_2)O</td>
</tr>
<tr>
<td>Szomolnokite</td>
<td>Fe(^{2+})SO(_4).H(_2)O</td>
</tr>
<tr>
<td>Ca-Mg-Na-Sr-Ba minerals</td>
<td></td>
</tr>
<tr>
<td>Anhydrite</td>
<td>CaSO(4)</td>
</tr>
<tr>
<td>Epsomite</td>
<td>MgSO(_4).7H(_2)O</td>
</tr>
<tr>
<td>Gypsum</td>
<td>CaSO(_4).2H(_2)O</td>
</tr>
<tr>
<td>Hexahydrite</td>
<td>MgSO(_4).6H(_2)O</td>
</tr>
<tr>
<td>Mirabilite</td>
<td>Na(_2)SO(_4).10H(_2)O</td>
</tr>
<tr>
<td>Thendrite</td>
<td>Na(_2)SO(4)</td>
</tr>
<tr>
<td>Other transition metals</td>
<td></td>
</tr>
<tr>
<td>Alunogen</td>
<td>Al(_3)(SO(_4))(_3).17H(_2)O</td>
</tr>
<tr>
<td>Bianchite</td>
<td>ZnSO(_4).6H(_2)O</td>
</tr>
<tr>
<td>Chalcanthite</td>
<td>CuSO(_4).5H(_2)O</td>
</tr>
<tr>
<td>Goslarite</td>
<td>ZnSO(_4).7H(_2)O</td>
</tr>
<tr>
<td>Gunningite</td>
<td>ZnSO(_4).H(_2)O</td>
</tr>
<tr>
<td>Retgesite</td>
<td>NiSO(_4).6H(_2)O</td>
</tr>
</tbody>
</table>

Alunite-Jarosite Group

Very common group of Acid Mine Drainage & Gossan minerals. Can incorporate many trace metals and oxyanions.

A\(^{2+}\)Fe\(^{3+}\) (SO\(_4\))\(_b\)(OH)\(_2\).20H\(_2\)O or B\(^{2+}\)Fe\(^{3+}\) (SO\(_4\))\(_b\)(OH)\(_2\).20H\(_2\)O

A= Ca, Cu, Fe, Mn, Mg, Zn, Co, Ni
B= Al, Fe, Cr.

Sulfate group can be partially replaced by selenite, phosphate, arsenate oxyanions.

Some examples:
- Argentojarosite: (K,Ag) Fe\(^{3+}\) (SO\(_4\))\(_3\)(OH)\(_6\)
- Alunite: K Al\(^{3+}\) (SO\(_4\))\(_2\)(OH)\(_6\)
- Jarosite: K Fe\(^{3+}\) (SO\(_4\))\(_2\)(OH)\(_6\)
- Plombojarosite: (Pb,K) Fe\(^{3+}\) (SO\(_4\))\(_3\)(OH)\(_6\)
- Osarizawaite-beaverite: (Pb,Cu)\(_2\)(Al,Fe\(^{3+}\))\(_2\)(SO\(_4\))\(_2\)(OH)\(_6\)
An important control on the diversity of the precipitated mineral assemblage is pH, for example in the oxidation of sulfides at low pH, Fe oxyhydroxides, scorodite and sulfates are formed while at higher pH other salts such as Ca-arsenates, smithsonite and malachite are precipitated. These mechanisms are reflected in the trace element chemistry shown for HFO precipitates from contrasting Nevada deposits (Table 5).

In HFO from low pH drainage, like Goldfields, base metal content is low despite the presence of base metal sulfides in the deposit. However, As is present, most likely adsorbed onto the mineral surface. In the higher pH HFO precipitate from Goldfields (Table 5), base metal content is higher as conditions in the drainage favor precipitation. Geologic controls are clearly demonstrated in the Getchell ochre sample that shows significantly higher As content than from the other deposits with the presence of pararealgar and Ca-arsenates (austinite, pharmacolite and weillite).

Clay minerals such as smectite (Na₃(Al,Mg)₂Si₄O₁₀(OH)₂·nH₂O) may also be responsible for the concentration of base metals in ochres, particularly in low pH HFO.

TABLE 4. Grouping of minerals according to their neutralization potential

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Typical minerals</th>
<th>Buffering pH range¹ (su)</th>
<th>Approx. NP² range</th>
<th>Relative reactivity³</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dissolving</td>
<td>Calcite, aragonite, dolomite, magnesite, aragonite, portlandite and brucite</td>
<td>6-11.2</td>
<td>7.8-14.8</td>
<td>1.0</td>
</tr>
<tr>
<td>2. Fast weathering</td>
<td>Anorthite, nepheline, olivine, garnet, jadeite, leucite, spodumene, khatanorite diopside, siderite and wollastonite</td>
<td>5.5-11</td>
<td>2.8-0.6.2</td>
<td>0.6</td>
</tr>
<tr>
<td>3. Intermediate weathering</td>
<td>Epidote, zoisite, enstatite, hyperthene, augite, hedenbergite, hornblende, glauco, tremolite, actinolite, anthophyllite, serpentine, chrysotile, talc, chlorite, biotite.</td>
<td>4.8-7.3</td>
<td>1.7-5.8</td>
<td>0.4</td>
</tr>
<tr>
<td>4. Slow weathering</td>
<td>Albite, oligoclase, labradorite, vermiculite, montmorillonite, manganese, goethite, gibbsite and kaolinite.</td>
<td>2.4-5.1</td>
<td>0.5-2.9</td>
<td>0.02</td>
</tr>
<tr>
<td>5. Very slow weathering</td>
<td>K-feldspar, ferrihydrite and muscovite</td>
<td>2.2-4.1</td>
<td>0.2-0.6</td>
<td>0.01</td>
</tr>
<tr>
<td>6. Inert</td>
<td>Quartz, hematite, rutile and zircon</td>
<td>3.3-3.5</td>
<td><0.01</td>
<td>0.004</td>
</tr>
</tbody>
</table>

¹ Buffering pH range evaluated by crushing 5g of pure mineral and mixing with 5ml of distilled water and left to react for 30 minutes. The pH of the distilled water was 3.4 su.

² NP range assessed as equivalent buffering potential of 10 g of pure mineral to calcite and titrated with hydrochloric acid. So for example, 10g of portlandite (Ca(OH)₂) was found to have the equivalent capacity to neutralise HCl acid as 14.8g of calcite. Whereas 10g of hornblende was required to buffer HCl acid to a similar pH to only 3.1g of calcite.

³ Calculated from Sverdrup’s equation (1990), see below and based on 100% mono-mineral sample.
promoting cation adsorption at a lower pH than with Fe-oxy-
hydroxides (Parfitt, 1978). The formation of smectite clays in
secondary mineral zones will be controlled by the geology
with propylitic alteration zones more likely to produce com-
plex clay minerals than in Carlin type illite alteration zones.

Environmental geologic models have been developed
over the last few years to provide some form of initial pre-
diction mechanism for understanding potential impacts antic-
ipated from mining mineral deposits. These have been large-
ly developed and applied in the USA (Plumlee, 1994; Gray et
al., 1994; du Bray, 1995; Price et al., 1995; Bowell et al.,
1998; Shevenell et al., 1999). A distinct correlation can be
observed for a mineral deposit type and predicted metal
leaching and acid generation. For example, based on a simi-
lar plot by Ficklin et al. (1992) and Plumlee (1994) a geolog-
ic grouping can be observed for mineral deposits with respect
to dissolved metals and drainage pH (Fig. 2). The environ-
mental implications of the more common mineral deposits in
the Great Basin are given below.

CONCEPTUAL GEOENVIRONMENTAL MODELS OF GREAT BASIN METALLIC ORE DEPOSITS

Environmental geologic models have been developed
ever the last few years to provide some form of initial pre-
diction mechanism for understanding potential impacts anticip-
ated from mining mineral deposits. These have been largely
developed and applied in the USA (Plumlee, 1994; Gray et
al., 1994; du Bray, 1995; Price et al., 1995; Bowell et al.,
1998; Shevenell et al., 1999). A distinct correlation can be
observed for a mineral deposit type and predicted metal
leaching and acid generation. For example, based on a similar
plot by Ficklin et al. (1992) and Plumlee (1994) a geologic
grouping can be observed for mineral deposits with respect
to dissolved metals and drainage pH (Fig. 2). The environ-
mental implications of the more common mineral deposits in
the Great Basin are given below.

ENVIRONMENTAL GEOLOGY OF COPPER PORPHYRIES

Porphyry deposits are typically large (typically 100-200
million tons of ore), low to medium-grade (<0.2-1wt% Cu
and 0.03-0.5% Mo) deposits in which hypogene ore minerals
are primarily structurally controlled showing both lateral and
vertical zonation (Fig. 3). A summary of the main geologic
and mineralogical characteristics of these deposits are given
in Table 6 (Lowell and Guilbert, 1970; Guilbert and Lowell,
1974; Kirkham, 1972; Titley, 1993; Kirkham and Sinclair,
1996).

TABLE 5. Trace element geochemistry of hydrous ferric oxide analyzed from different Nevada mineral deposits.

<table>
<thead>
<tr>
<th>Deposit</th>
<th>Ruth Pit, Ely</th>
<th>Tripp/Vet pit, Ely</th>
<th>Goldfields</th>
<th>Goldfields</th>
<th>Ten Mile</th>
<th>Getchell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage pH (su)</td>
<td>3.3</td>
<td>6.4</td>
<td>2.9</td>
<td>5.4</td>
<td>6.8</td>
<td>6.6</td>
</tr>
<tr>
<td>Deposit type1</td>
<td>P</td>
<td>P</td>
<td>H/S</td>
<td>H/S</td>
<td>L/S</td>
<td>C</td>
</tr>
<tr>
<td>HFO mineralogy2</td>
<td>Ge,Js, Sc,Cc</td>
<td>Fer,Ge,Sc</td>
<td>Ge,Js,Cc</td>
<td>Fer,Ge,</td>
<td>Fer,Ge,</td>
<td>Caas, Ge, Fer, Sc, Pr</td>
</tr>
<tr>
<td>Elements</td>
<td>All analyses by LAICPMS3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td><1</td>
<td>16.8</td>
<td>1.91</td>
<td>46.2</td>
<td>4.2</td>
<td>66.4</td>
</tr>
<tr>
<td>Ni</td>
<td><1</td>
<td>25.2</td>
<td>2.32</td>
<td>89.6</td>
<td>7.6</td>
<td>58.8</td>
</tr>
<tr>
<td>Cu</td>
<td>316</td>
<td>911</td>
<td>88.9</td>
<td>732</td>
<td>12.4</td>
<td>76.1</td>
</tr>
<tr>
<td>Zn</td>
<td>43.4</td>
<td>58.9</td>
<td>96.5</td>
<td>333</td>
<td>84.5</td>
<td>149</td>
</tr>
<tr>
<td>As</td>
<td>169</td>
<td>118</td>
<td>890</td>
<td>730</td>
<td>1210</td>
<td>9670</td>
</tr>
<tr>
<td>Sc</td>
<td>11.2</td>
<td>36.3</td>
<td>86.5</td>
<td>221</td>
<td>415</td>
<td>355</td>
</tr>
<tr>
<td>Ag</td>
<td>67</td>
<td>82.3</td>
<td>34.8</td>
<td>41.5</td>
<td>498</td>
<td>87.3</td>
</tr>
<tr>
<td>Cd</td>
<td>2.9</td>
<td>4.11</td>
<td>4.8</td>
<td>12.9</td>
<td>1.3</td>
<td>11.9</td>
</tr>
<tr>
<td>Sb</td>
<td>1.68</td>
<td>3.21</td>
<td>2.7</td>
<td>21.3</td>
<td>16.8</td>
<td>492</td>
</tr>
<tr>
<td>Hg</td>
<td>1.76</td>
<td>2.49</td>
<td>38.6</td>
<td>279</td>
<td>109</td>
<td>459</td>
</tr>
<tr>
<td>Pb</td>
<td>441</td>
<td>569</td>
<td>1890</td>
<td>2130</td>
<td>1660</td>
<td>3780</td>
</tr>
<tr>
<td>U</td>
<td>34.6</td>
<td>17.6</td>
<td>4.2</td>
<td>1.6</td>
<td><1</td>
<td>2.5</td>
</tr>
</tbody>
</table>

1P=porphyry; H/S=High Sulfidation; L/S=Low Sulfidation; C=Carlin-type
2Mineralogy by XRD: Caas- Calcium arsenates; Cc-Chalcanthite; Fer-Ferrihydrite; Ge-Goethite; Js-Jarosite; Pr-Pararealgar; Sc-Scorodite; Sch-Schwertmannite
3All analyses performed using Laser Ablation Inductively Coupled Mass Spectrometry. All samples prepared as probe blocks. Instrument used, VG Instruments PQH+ICP and VG LaserLab run in fixed Q-mode (Bowell et al., 1999).
FIGURE 2. Metal concentration (Co+Ni+Cu+Zn+Ag+Cd+Pb) and drainage pH for different Nevada deposit types discussed in the text.
KEY
QZ quartz, MS muscovite, Cl. chlorite, KF potassic feldspar, BI biotite, AH anhydrite, AB albite, AA adularia, CB carbonate, EP epidote, MG magneteite, Au gold, Ag silver, CP chalcopyrite, PY pyrite, Mo molybdenite, GA galena, SL sphalerite.

A cross-section of an idealised porphyry copper deposit showing (a) alteration zones and (b) sulfide distribution (after Guilbert and Lowell, 1974).

FIGURE 3. Schematic cross-section of a porphyry copper system (modified from Guilbert and Lowell, 1974).
Hypogene mineralization can host from <1-20% sulfide chiefly as pyrite with accessory chalcopyrite, molybdenite, bornite, chalcolite and covellite (Table 6). The most important environmental zone is the pyrite-rich “ore shell” halos with up to 20% volume (Guilbert and Lowell, 1974). Typically these zones carry sub-economic grades and thus the potentially most acid generating rock is waste.

Alteration minerals are also zoned with peripheral propylitic alteration, containing carbonates, being the only significant buffering. Despite this, due to the coarse idiomorphic nature of sulfides they tend to be sluggish in their oxidation reaction. Consequently ARD is not always a significant issue with Copper porphyries.

The contrast in porphyry deposits for ARD is shown in Figure 4. The majority of porphyry waste rocks are low metal, non to low-acid generating, but some zones within the porphyry can produce a high potential. Typically these are from the silicified sulfide-bearing zones that have been partially oxidized and so have associated with the sulfides, a series of Cu-Fe sulfate salts and other sources of secondary acidity such as jarosite. Another sulfide zone is also shown on this figure that has a predicted high total acid to be generated but a circumneutral paste pH. These samples are from a zone of supergene enrichment in a copper porphyry deposit, this typically comprises of goethite, cuprite, chalcolite and covellite with minor jarosite and relict pyrite. Due to the configuration of chalcolite it does not produce protons on oxidation but hydroxyl ions and consequently produces alkaline drainage. Within this drainage, metal levels are low. Consequently for chalcolite-rich ores traditional Acid Base Accounting (Sobek et al., 1978) fails to reflect this and over estimates acid potential. Supergene copper zones are common in copper porphyry deposits of the western USA (Lowell and Guilbert, 1970; Guilbert and Lowell, 1974) and also in Nevada such as in the Ruth Pit in the Robinson mining district (Smith, 1976).

ENVIRONMENTAL GEOLOGY OF CARLIN-TYPE DEPOSITS

Carlin-type deposits are probably the most significant source of gold in the Great Basin (Berger and Bagby, 1991; Kuehn and Rose, 1995; Teal and Jackson, 1997). These deposits are typically large-tonnage, low grade epigenetic deposits hosted predominantly in carbonate rock formations (e.g. Carlin mine, Getchell pits). They are formed through the focusing of hydrothermal fluids along zones of weakness (Fig. 6), such as deep fault zones and mixing of deep crustal waters with meteoric recharge (Berger and Bagby, 1991; Kuehn and Rose, 1995; Bertensen et al., 1996; Teal and Jackson, 1997). Host rocks are often carbonaceous and contain abundant calcite and dolomite (Table 6). Sulfide levels in the mineralization can range from <1% to 20-30% and are dominated by abundant marcasite and pyrite that show morphologies from idiomorphic crystals to porous, microcrystalline grains (Bowell et al., 1999; Simon et al., 1999). Possible accessory minerals include realgar and orpiment (noticeably at Getchell where ores can grade up to 30% As), stibnite, Hg-Tl-As sulfosalts, and rarely arsenopyrite, sphalerite and galena (Berger and Bagby, 1991).

Carlin deposits tend not to have anywhere near the same potential for acid generation or metal leaching as other mineral deposit types in the Great Basin (Fig. 5 and Table 7). Similarly with metal leaching, base metal sulfides are volumetrically lower in Carlin deposits so there is less potential to discharge first row transition metals (Hofstra et al., 1995; Price et al., 1995). Trace elements associated with Carlin deposits are however environmentally of concern and include As, Sb, Hg, Tl, Ag, Ba, W, and Se (Kuehn and Rose, 1995). Most of these elements generally show a low mobility in acidic systems due to the strong adsorption potential for their oxanions by mineral surfaces (Sigg and Stumm, 1980; Deng and Stumm, 1994; Bowell et al., 1996). But in alkaline systems these oxanions may be dispersed and be readily mobilized in the circumneutral groundwaters observed in Nevada (Table 8). Natural controls are dependent on the availability of Ca and Fe to bind with these oxanions. High concentrations can persist and mobility can be exacerbated in the environment by evapoconcentration (Eary, 1998).

ENVIRONMENTAL GEOLOGY OF HIGH SULFIDATION DEPOSITS

These deposits are classed as High Sulfidation precious metal Epithermal deposit (Table 6). Typically they are vertically zoned with the highest sulfide content associated with the silicified and leached zones (Fig. 7). The characteristic geologic, mineralogical and geochemical features of this class of deposit influence the environmental behavior of altered rocks and ore found within them.

These deposits typically show high sulfide content, typically from 20-50% of the ore zone and altered wallrock with up to 50% sulfide, chiefly pyrite but several other sulfides can also be important (Table 6). This is reflected in the acid generation potential and reactivity of these deposits (Table 7) and drainage chemistry (Table 8).

These deposits also commonly contain secondary minerals such as chalcanthite, jarosite, scorodite and effervescent iron-sulfate salts. For example at Borealis (Eng, 1991), jarosite is common in the oxidized wallrock and additionally halotrichite, melanterite, and szomolnokite have also been observed by the authors.

The high acid generating capacity of these deposits not only reflects sulfide content but also the leaching of carbonates that accompanies formation of the hydrothermal deposit (Heald et al., 1987; White and Hedenquist, 1995). Such that, even low-sulfide clay-alunite caps to the mineralization and much of the wallrock display highly acidic paste pH indicating high reactivity (Table 8). The only potential buffering capacity is observed in peripheral zones and at depth where propylitic alteration occurs or where a carbonate overprint has been produced post deposit formation. Veins are generally subordinate to disseminated ore types, thus although conduits to deep unexposed sulfides are low the actual surface
TABLE 6. Summary of geological characteristics of the Great Basin deposit types discussed in the text.

<table>
<thead>
<tr>
<th>Deposit class</th>
<th>Geology</th>
<th>Ore Mineralogy</th>
<th>Alteration characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Sulfidation (Quartz-Alunite)(^1) (H/S)</td>
<td>Felsic volcanic rocks hosted in older sedimentary, volcanic or crystalline rocks. Often associated with composite volcano complex.</td>
<td>High sulfide component, dominated by pyrite (up to 50% of ore zone) also quartz and alunite are abundant. Accessories include gold or electrum, then in the shallow zones Ag-sulfosalts, cinnabar, octahedrite, and realgar. Deeper in the hydrothermal system, chalcopyrite, enargite-luzonite, tennantite-tetraedrite, galena and sphalerite.</td>
<td>Zoned, deep argillic alteration surrounds quartz-pyrite core; intermediate areas propylitic and argillic alteration around core; near surface vuggy silica, quartz-alunite and peripheral propylitic alteration (calcite-epidote-quartz-pyrite-clays)</td>
</tr>
<tr>
<td>Low Sulfidation (Quartz-Adularia)(^2) (L/S)</td>
<td>Andesitic to felsic volcanics and volcanoclastic rocks. Associated with sedimentary basins and may extend into underlying volcanic sequence.</td>
<td>Native gold or electrum, with low to moderate sulfide. High variability between deposits, some have tellurides or selenides, other abundant base metal sulfides such as chalcopyrite, galena and sphalerite. Most contain quartz-adularia veins as the main ore although in some cases pervasive silification can also occur.</td>
<td>Strongly zoned, central silica unit and potassic (adularia), grading out to quartz-sericite-illite and low temperature clays and zeolites and propylitic assemblages (chlorite-epidote-calcite-quartz-pyrite)</td>
</tr>
<tr>
<td>Porphyry Copper(^3) (P)</td>
<td>Intermediate to felsic intrusives, associated with breccia pipes, volcanic, calcareous sedimentary rocks and basins.</td>
<td>Chalcopyrite-bornite-molybdenite ores with pyritic shell. Gangue and alteration minerals grade outwards. Late stage quartz, clay, pyrite, electrum veins or supergene halos of chalcopyrite-covellite. Accessory minerals include enargite, tetrahedrite, galena, sphalerite and barite.</td>
<td>Strongly zoned, inner silica and potassic zones, argillic and propylitic. A pyrite shell is often present around the ore zone. Overprinting common.</td>
</tr>
<tr>
<td>Carlin type(^4) (C)</td>
<td>Calcareous or dolomitic sedimentary rocks. can also be associated with arenaceous sedimentary rocks and volcanics. In some cases clear association with felsic magmatic activity.</td>
<td>Disseminated micron gold, quartz, pyrite, marcasite, dolomite, calcite, sericite, clays, opalinite, realgar, barite. Base metal sulfides rare to absent. Oxide ore has high goethite content.</td>
<td>Primary ore-sulfide associated with silicification, sulfidation, argillization and decalcification. Oxide ores appear as vuggy silica, pseudo-gossans</td>
</tr>
</tbody>
</table>

\(^1\)Heald et al. (1987); du Bray (1995); White and Hedenquist (1995)
\(^2\)Heald et al. (1987); du Bray (1995); White and Hedenquist (1995)
\(^3\)Lowell and Guibert (1970); Guibert and Lowell (1974); Titus (1993); du Bray (1995)
\(^4\)Berger and Bugby (1991); Hofstra et al. (1995)
FIGURE 4. NAG value versus MWMP leachable metals (Co+Ni+Cu+Zn+Ag+Cd+Pb) for different Nevada deposit types discussed in the text.
FIGURE 5. NAG value versus paste pH for different Nevada deposit types discussed in the text.
TABLE 7. Summary hydrogeochemical characteristics of surface water at deposits that appear in the geoenvironmental models discussed in the text (data from NDEP records; Price et al., 1995; Getchell data from SRK, 1999).

<table>
<thead>
<tr>
<th>Deposit</th>
<th>Class</th>
<th>pH, su</th>
<th>TDS</th>
<th>Fe</th>
<th>Mn</th>
<th>As</th>
<th>Cu</th>
<th>Zn</th>
<th>Sulfate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goldfields</td>
<td>H/S</td>
<td>2.2</td>
<td>3100</td>
<td>485</td>
<td>17.1</td>
<td>8.6</td>
<td>17.5</td>
<td>23.6</td>
<td>2850</td>
</tr>
<tr>
<td>Borealis</td>
<td>H/S</td>
<td>2.73-3.19</td>
<td>580-1240</td>
<td>0.4-28</td>
<td>0.51-1.1</td>
<td><0.005-0.005</td>
<td>0.59-1.5</td>
<td>0.12-0.27</td>
<td>570-1020</td>
</tr>
<tr>
<td>Aurora</td>
<td>L/S</td>
<td>7.31-7.42</td>
<td>313-491</td>
<td><0.05-0.07</td>
<td>0.022-0.091</td>
<td><0.005-0.005</td>
<td><0.005</td>
<td><0.005</td>
<td>36-265</td>
</tr>
<tr>
<td>Tuscarora</td>
<td>L/S</td>
<td>7.2-8.68</td>
<td>192-800</td>
<td>0.05-1.1</td>
<td><0.005-0.021</td>
<td><0.005-0.023</td>
<td><0.005-0.01</td>
<td><0.005-0.026</td>
<td>51-190</td>
</tr>
<tr>
<td>Liberty pit</td>
<td>P</td>
<td>2.86-7.29</td>
<td>2870-7010</td>
<td>0.033-105</td>
<td>22.8-144</td>
<td><0.005-0.005</td>
<td>0.014-50.6</td>
<td>7.51-66.7</td>
<td>1910-3940</td>
</tr>
<tr>
<td>Yerrington</td>
<td>P</td>
<td>7.98-8.25</td>
<td>450-645</td>
<td><0.01</td>
<td>0.03-0.05</td>
<td>0.003-0.01</td>
<td><0.005-0.158</td>
<td><0.005-0.016</td>
<td>65-277</td>
</tr>
<tr>
<td>Tonapah</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortez</td>
<td>C</td>
<td>7.55-8.13</td>
<td>425-553</td>
<td><0.05-0.257</td>
<td><0.003-0.135</td>
<td>0.007-0.04</td>
<td><0.005</td>
<td><0.005-0.013</td>
<td>82-157</td>
</tr>
<tr>
<td>Boss</td>
<td>C</td>
<td>8.8-19</td>
<td>8510-15700</td>
<td><0.05-3.2</td>
<td><0.05</td>
<td>0.91-3.1</td>
<td><0.05-0.19</td>
<td><0.05</td>
<td>3270-4860</td>
</tr>
<tr>
<td>Getchell SCP lake-surface</td>
<td>C</td>
<td>6.67-8.7</td>
<td>245-1720</td>
<td>0.09-2.4</td>
<td>0.002-3.7</td>
<td>0.034-11</td>
<td><0.002-0.008</td>
<td><0.002-3.6</td>
<td>58-1000</td>
</tr>
<tr>
<td>Getchell SCP lake-metalimnion</td>
<td>C</td>
<td>7.8-6</td>
<td>600-1370</td>
<td>0.05-0.72</td>
<td>0.06-0.7</td>
<td>0.44-3.5</td>
<td><0.002-0.01</td>
<td><0.002-0.15</td>
<td>380-700</td>
</tr>
<tr>
<td>Getchell SCP lake-hypolimnion</td>
<td>C</td>
<td>3.3-7.6</td>
<td>500-5100</td>
<td>0.25-410</td>
<td>0.72-2.7</td>
<td>0.53-18</td>
<td>0.003-0.15</td>
<td>0.3-38</td>
<td>400-2900</td>
</tr>
</tbody>
</table>
SCHEMATIC MODEL FOR THE DEVELOPMENT OF A CARLIN - TYPE DEPOSIT.
STAGE 1 - Initial mineralization consists of probable skarn and possible stockwork metallization in the immediate vicinity of the intrusive complex and concurrent formation of early jasperoid distal to the complex.
STAGE 2 - Schematic model for the development of a Carlin gold deposit. Gold mineralization may occur either close in, or distal to, the intrusive complex. Gold deposition typically coincides with early, pre-ore jasperoid. The early jasperoid may be above, within, and / or beneath the gold mineralization.
(after Berger & Bagby, 1991)

TABLE 8. Summary geochemical characteristics of the geoenvironmental models for ore zone material.

<table>
<thead>
<tr>
<th>Class</th>
<th>Paste pH, su</th>
<th>% Sulfide, range</th>
<th>NAG, eq.kg H₂SO₄/T</th>
<th>NAG, final pH CaCO₃/T</th>
<th>NNP, eq.kg CaCO₃/T</th>
<th>Metals¹ enriched in rocks</th>
<th>Major MWMP leachable metals (>2 SD regulatory limit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H/S</td>
<td>0.45-6.7</td>
<td>3.4-31</td>
<td>8-550</td>
<td>0.78-4.56</td>
<td>-325 - -5.9</td>
<td>Fe, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Te, Au, Hg, Tl, Pb, Bi</td>
<td>Fe, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Pb, Bi</td>
</tr>
<tr>
<td>L/S</td>
<td>3.2-8.3</td>
<td><0.1-6.3</td>
<td>0-23.5</td>
<td>2.82-6.54</td>
<td>-22.1-112</td>
<td>Cu, Zn, As, Se, Ag, Cd, Te, Au, Hg</td>
<td>As, Se, Cd, Pb</td>
</tr>
<tr>
<td>P</td>
<td>2.2-8.1</td>
<td>0.2-21.6</td>
<td>0-129</td>
<td>1.65-5.87</td>
<td>-108-12.1</td>
<td>Fe, Mn, Cu, Zn, As, Se, Mo, Ag, Cd, Sn, Au</td>
<td>Mn, Cu, Zn, As, Se, Mo, Cd</td>
</tr>
<tr>
<td>C</td>
<td>3.6-11.2</td>
<td><0.1-18.8</td>
<td>0-98</td>
<td>2.44-6.11</td>
<td>-55.4 – 7.6</td>
<td>As, Ag, Cd, Sb, Ba, W, Au, Hg, Tl, Pb</td>
<td>As, Cd, Sb, Hg, Tl, Pb</td>
</tr>
</tbody>
</table>

¹) Geochemical anomaly
H/S High Sulfidation
L/S Low Sulfidation
P Porphyry
C Carlin-type
area of the mineralization can be significant (Heald et al., 1987).

Due to the high level placement, mineral grains tend to be very fine, thus have a high surface area: volume ratio and consequently tend to be more reactive. Typical grain size is of the order of < 5mm indicating fine grains. Complex mineral parageneses are common leading to mixed assemblages of pyrite and base metals. The result is that sulfides with widely different electrochemical characteristics occur together and thus range promote sulfide oxidation through the localized formation of anode-cathode “self-generating” sulfide battery cells (Thornber, 1983).

Geochemically the anomalous elements associated with such deposits include ore grades of Au, Ag and Cu and pathfinder elements such as As, Sb, Bi, Hg, Te, Sn, Pb, Mo and Se (White and Hedenquist, 1995). These latter pathfinders are all potential pollutants and in the case of As, Hg and Pb particularly, exhibit “low environmental tolerance. In summary, this style of mineralization can be predicted to be both acid generating and contain a significant potential for release of pollutants (Fig. 2).

ENVIRONMENTAL GEOLOGY OF LOW SULFIDATION EPITHERMAL DEPOSITS

Low sulfidation Epithermal deposits are formed in a similar environment to high sulfidation systems (Fig. 7), but from circumneutral hydrothermal fluids rather than acidic solutions (Barton and Skinner, 1979). These deposits typically show low sulfide content, from <5-20% of the ore zone and altered wallrock even less, usually being <5% sulfide (Table 6).

Secondary minerals associated with these deposits tend to reflect the circumneutral to alkaline nature of the mineralization with carbonates such as siderite, malachite, azurite, smithsonite and cerussite being common.

By contrast to high sulfidation systems, abundant mineral buffering is available with calcite forming a major component of the vein mineralization and the extensive adulariasericite and propylitic alteration halos. Consequently the field paste pH and NAG values indicate a low potential for acid generation (Fig. 5) with little metal leaching (Figs. 2, 4).

Low sulfidation deposits are formed in vuggy open space veins comprising the major form of mineralization with minor disseminated or replacement styles of mineralization. Due to the open space nature of the mineralization, sulfides tend to have a wide range in grain size (<0.1 to >50 mm) and are often idiomorphic implying a greater degree of stability than for fine grained porous sulfides often observed in the high sulfidation deposits.

Geochemically the anomalous elements associated with such deposits include ore grades of Au and Ag and pathfinder elements such as high Ag/Au, As, Sb, Hg, Te, Zn, Pb, Te and K (White and Hedenquist, 1995). In the case of As, Sb and Te, mobility can be enhanced in alkaline environments so whilst acid generation and mobilization of base metals is unlikely to occur, a potential environmental impact related to geologic characteristics still exists.

FIELD ASSESSMENT OF ENVIRONMENTAL IMPACT

The environmental impact of a metallic ore deposit, can be viewed in terms of:
- Potential for contaminant generation (metals, acid and salts)
- Potential for contaminant buffering

Both these parameters can be estimated on the basis of mineralogical and geochemical attributes of the ore and waste to be mined. In reality, complications occur due to differences in petrology, rock competency, biogeochemical processes, background hydrogeology and hydrogeochemistry of the mineral property area, as well as the limitation of mineral weathering data. Yet despite this, field estimates are useful in identifying those rock units or ores that contain a high concern for impact at an very early stage in the mining project.

FIELD EVIDENCE FOR ACID GENERATION AND METAL RELEASE

Definitive identification, characterization and assessment of ARD requires a combination of field observations, laboratory tests and predictive modelling. However a valid field assessment can be made based on mineralogical and geologic evidence and from simple field tests. An outline of these procedures is provided below.

PRIMARY MINERALOGY

From the above conceptual geoenvironmental models it is evident that key criteria can be identified for metal leaching and acid generation including sulfide and carbonate mineralogy and the presence of Ca-Mg fast weathering silicates. Several ABA schemes have been proposed on a mineralogic balance but are often poorly applied. Using one of the more useful schemes, the comparison of mineralogical and laboratory derived NNP values from Nevada deposits, of the classes discussed above, is presented below.

The method used here, proposed by Kwong (1993), relates the number of protons released from sulfide oxidation (from experimental work by Thornber, 1975a,b; 1983; 1992; 1993) to buffering capacity (defined by cation release from theoretical calculations of Sverdrup, 1990). The complete deriviation of the equations can be found in Kwong (1993) essentially the main derivatives are:

\[\text{Estimate of proton release} \]

\[\text{Number of H}^+ \text{ per sulfide atom} = 2(1-r) \]
Where \(r \) = average metal/sulfur atomic ratio in the sulfide mineral. If the metal concerned is Fe, the Thornber (1975) formula is modified to account for ferrolysis (Table 2).

The modified Thornber formulae (Thornber, 1993) would read,

\[\text{AGP}_{\text{field,Fe}} = \text{Number of H}^+ \text{ per sulfide atom} = 2(1-r+p) \]
Where \(p \) = proportion of ferrous iron in the metal sulfide assemblages and AGP=Acid Generation Potential. The modification is required whenever Fe\(^{3+}\) is not stable relative to...
Net Neutralization Potential (NNP field) is negative then the reaction rate with respect to carbonates, on a mono-mineral basis (Kwong, 1993). From the predicted values shown in Table 4, W_n’ = relative reactivity of the mineral class "n". As shown in Table 4, W_n’ = relative reactivity of the mineral group n. Consequently taking both of these values a field NNP, can be estimated as being equal to the equivalent moles of carbonate present for buffering. The maximum buffering for one mole being 2. Consequently for classes 1-3 of Sverdup’s classification, the field Neutralization Potential (NP) can be calculated as being:

\[\text{NP}_{\text{field}} = 2 \sum x_m K_n \]

Where \(x_m \) = molar proportion of minerals in class “n” and \(K_n \) is the relative reactivity of mineral class “n”. As shown in Table 4, \(W_n’ \) = relative reactivity of the mineral group n. Consequently taking both of these values a field NNP, can be estimated as:

\[\text{NP}_{\text{field}} = \text{NP}_{\text{field}} - \text{AGP}_{\text{field}} \]

Or

\[\text{NP}_{\text{field}} = 2 \left(\sum x_m K_n \right) - \left\{ x \left(1 + r + p \right) \right\} \]

Where \(x_s \) is the fraction of sulfide in the mine waste. If Net Neutralization Potential (NNP_{\text{field}}) is negative then the material is classed as being potentially acid generating. As an example field NNP values were calculated for four deposits in Nevada, on the basis of mineralogy and compared to traditional ABA results (Price, 1997). As can be observed the field estimates show slight to significant variation for each of the mineral deposits, related to mineralogical controls, but generally show a similar trend for low and high NNP estimates.

High sulfidation deposits show the best correlation as described and this information used to select appropriate target elements in chemical testwork augmenting information from geologic and bulk rock geochemistry studies.

SECONDARY MINERALIZATION

The neutralization of ARD results in the formation of mineral precipitates along drainage channels, waste rock piles, and wall rock. Such phases include jarosite and iron oxyhydroxides (yellow to red color), aluminum hydroxides (white), metal salts that can be green (Ni), pink (Co), bluish-green (Cu), deep blue (Mo), red (Pb), or white. On the basis of composition of these salts the mobile metals can be described and this information used to select appropriate target elements in chemical testwork augmenting information from geologic and bulk rock geochemistry studies.

WEATHERING

Acid generation, buffering, metal mobilization and secondary mineral precipitation are part of the natural geochemical cycling of elements. As weathering progresses downwards,
FIGURE 8. Correlation between field and laboratory NNP for different Nevada deposit types discussed in the text.
distinct horizons are formed. A typical sequence includes an acidic weathered surface layer, a moderately acidic layer dominated by iron oxyhydroxides and an underlying circum-neutral layer.

FIELD INDICATORS IN DRAINAGE WATERS

Water coming into contact with a rock mass will transport the products of acid generation and metal leaching including dispersed sulfate salts. Typically such waters have a yellow to orange to red discoloration from the presence of dispersed Fe(OH)_3 particles (pH > 3 su) or dissolved Fe^{3+} (pH < 3 su). These waters often have high electrical conductivity (>5 μS/cm). These waters are different from acidic waters resulting from humic acid dispersion as is found in peat wetlands which have a black to brown color, pH is rarely below 5 su and the water has a low electrical conductivity (typically ~ 100-200 (S/cm)).

FIELD INDICATORS FROM THE ROCKS

Additional to the qualitative observational information above, the potential reactivity of a rock unit can be assessed from measuring pH and electrical conductivity of a paste. The paste is formed by crushed rock and water mixed in a ratio of 1:1 for arid climates (such as the Great Basin) or 2:1 (respectively) for material in more temperate climates.

The paste pH result infers potential acid generation if the pH reading is < 4 su. Where Fe-sulfate salts are strongly developed, such as in high sulfidation systems paste pH can commonly be as low as pH 1.5-2 su. The paste pH result is a reasonable indicator for high sulfidation, porphyry and Carlin deposits described above of potential acid generation when compared to traditional NNP analyses (Fig. 9). Although in detail the ordering of strong and moderate acid generation potential is not always the same, the test distinguishes between high and low reactivity. In the case of the low sulfidation deposits the presence of scarce idiomorphic crystals of sulfides and abundant reactive alkalinity from carbonates results in a masking of the “geologic potential”(defined by the NNP) and the “reactive potential” of the lithologies.

CONCLUSIONS

In this paper we have attempted to describe some of the important geologic controls on the environmental impacts associated with metal mineral deposits that are common to the Great Basin. The importance of understanding geologic processes that generate and control environmental impacts is proposed here to be fundamental not just in evaluation but also in future prediction and mitigation of the effects of acid generation and metal leaching.

The processes that generate acidity and leach metals are essentially the reaction between rocks and the environment as the rock mineralogy attempts to define equilibrium with prevailing environmental conditions. Consequently an assessment of ARD can gain considerable benefit from a geologist’s knowledge of the geochemical behavior of mineral deposits as well as the changes that can be anticipated over the property with respect to structural changes, groundwater flow and mineralogical variations in the lithologies.

At the reconnaissance stage, the main task is the identification of the major acid-generation or acid-neutralizing rock units. This can be achieved by examining the mineralogical content of the known rock types, their competency, petrology and extent of weathering. In highly weathered outcrops, secondary minerals can be identified and natural run-off characterized.

Once a mineralized target has been delineated a more valuable assessment can be acquired with information on mineralogical variations, porosity and structural integrity of relevant lithologies. These data are essential in the rapid assessment of acid-generating/neutralizing potential. Petrology of representative core samples will allow the description of the relationship between various sulfide and gangue minerals to be assessed. Examination of exposed sub-outcrops will reveal the nature and extent of oxidation and chemistry of secondary mineral products if not identified elsewhere. A further task is to delineate likely deleterious trace elements. This information is best collected from whole rock geochemistry acquired during exploration activities.

At the feasibility stage, a comprehensive environmental impact statement for permitting purposes is generally prepared with various detailed monitoring programs and specific studies. Any ARD studies can be significantly enhanced by allowing field geologists an opportunity to be involved in the selection of representative material to reflect the broad range of potential environmental interactions anticipated from exposed underground and pit wall lithologies, waste rock and ore stockpiles.

The geo-environmental understanding of mineral deposits is essential in defining remediation objectives. In many situations, natural drainage is poor and it is inappropriate and in a few cases impossible to remediate a site to “pristine conditions” with water quality required to drinking water standards. However, in many states in the USA and in many national government agencies the natural occurrence of ARD has yet to be accepted. The development of valid geo-environmental models provides a challenge to current regulatory requirements. In the future they may support the need for more realistic closure objectives to be set, that account for local geologic variations.

ACKNOWLEDGMENTS

This paper has made extensive use of field notes, reports, unpublished data and ideas held by Steffen Robertson & Kirsten and we acknowledge the debt we owe numerous colleagues past and present for discussion, review and support particularly our reviewers Richard Connelly, Steve Day, Piers Sadler and Gareth Donovan. We acknowledge the support of clients who provoked thought, improved the manuscript through review and graciously approved publication of the
FIGURE 9. Correlation between paste pH and laboratory NNP for different Nevada deposits discussed in the text.
data within this paper particularly we acknowledge the support of John Barta of Getchell Gold Corporation. Also we acknowledge the co-operation of Dr Keith Williams and Dr Matthew Dey of the Division of Materials and Minerals, Cardiff University who have provided laboratory and analytical facilities at Cardiff University for part of this work.

REFERENCES

Bhatti, T.M., Bigham, J.M., Vuorinen, A. and Tuovinen, O.H., 1994,

Sobek, A.A., 1978, Field and laboratory methods applicable to overburdens and mine soils. USEPA, Cincinnati, Ohio: EPA 600/2-78-054.

Recommended citation: